Fuzzy Decision Tree Based Rule Extraction in Securities Analysis
نویسندگان
چکیده
While larger and larger pools of stock market data are available for investors, it is crucial for them to achieve the knowledge hidden behind and make the correct selections. The huge data amount, the variable data characteristic, and the noisy environment make this goal a great challenge. Using the model of fuzzy decision tree based rules extraction, a new set of fuzzy rules to select stocks with high returns is derived in this study. They are easy to comprehend and are proved to be efficient for picking these stocks. In performance evaluation, a portfolio is built for each year from year 1998 to year 2003 based on these rules. On average, the portfolio receives an annual return of 19.1%, much better than the average annual return, 5.8%, of the S&P 500 index.
منابع مشابه
Voltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملApplication of the rule extraction method to evaluate seismicity of Iran
Assessing seismic hazards involves specifying the likelihood, magnitude and location of earthquakes in a region. Predicting the seismic hazards is the first step in reducing the impact of the damage caused by an earthquake. In this study, to fully utilize all the known parameters which may possibly affect the occurrence of earthquakes (mb ≥ 4.5); a data-driven rule-extraction method called the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017